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eurocomputing can support  
learning relationships, cluster N analysis, associative recall, and 

optimization. Currently, these proce- 
dures are based on different algorithms 
requiring different specialized system 
architectures. 

In this report, we describe a system 
architecture and a network computa- 
tional approach compatible with our 
goal of devising a general-purpose arti- 
ficial neuraI.net computer. This ap- 
proach has been described previous- 
ly.’.* We  revisit it here to  emphasize the 
advantages that accrue from simplifica- 
tion of net architecture. 

The  theoretical basis of our approach 
is primarily Theorem 2.4 from work 
by Hornik, Stinchcombe, and White’ 
(see the sidebar above right). Specifi- 

cally, the theorem holds that i f f  is a 
mapping R‘ + R (from r-dimensional 
space to one-dimensional space), then 
we can approximate that function arbi- 
trarily well by 

where (A, x + h,) represents a linear 

transformation of the input pattern vec- 
tor x. We can understand the mapping 
of the above equation in terms of a feed- 
forward net that must learn both the 
two sets of weights (0,) and (A,] and 
thresholds h,, usually through back prop- 
agation of error. 

The  random-vector version of the 
functional-link net generates (A,] and b, 

Figure 1. Comparison of hidden-layer net (a) and functional-link net (b) architectures. 
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randomly, and must learn only p,. 
This results in a flat-net architecture 
for which only weights (p,) must be 
learned. Learning is in the nature of 
quadratic optimization and is ex- 
tremely rapid. 

In this report, we illustrate thefunc- 
tionalities of supervised learning and 
optimization and briefly mention clus- 
ter analysis and associative recall. 

Supervised learning. Figure 1 com- 
pares the net architectures of the 
single hidden-layer net and the ran- 
dom-vector version of the function- 
al-link net. In  the functional-link net, 
the vectors A, and thresholds h, are 
generated randomly, not learned. 

Figure 2 compares the performanc- 
es of a single hidden-layer net and a 
functional-link net in an inferring 
network description of a two-dimen- 
sional surface, given only 24 exam- 
p l e ~ . ~  The  actual two-dimensional 
surface is made up of two Gaussiaus, 
as Figure 2a shows. Data fed to the 
networks consisted of 24 samplings 
of the surface. Acting on that data. a 
back-propagation net with 48 hid- 
den-layer nodes was able to learn the 
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Figure 2. Comparative evaluation of learning rates and approximation capabili- 
ties: (a)  surface to be learned, consisting of two Gaussians; (b) back-propaga- 
tion net with 48 nodes in the hidden layer; (c) functional-link flat net with 48 
enhancement nodes; (d) functional-link flat net with 200 enhancement nodes. 
Learning time in (d) is 0.14 that of (a). 
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Figure 3. System architecture of the functional-link net. 

surface to the extent shown in Figure 
2b. The  functional-link nets with 48 and 
200 enhancement nodes achieved bet- 
ter approximations with fewer iterations 
in less time (Figures 2c and 2d). 

System architecture. T h e  random- 
vector version of the functional-link net 
is well suited to large-scale hardware 
implementation. Figure 3 schematically 
illustrates a network system architec- 
ture. 

Optimization. The functional-link net 
can support many different functional- 
ities with the same system architecture 

and with only mi- 
nor changes in the 
algorithm. Figure 4 
shows the use of 
such a net for deal- 
ing with the bipar- 
tite subgraph opti- 
mization problem.' 

For  the original 
10-vertex, 27-edge 
graph  shown in 
Figure 4a, the task 
is to construct a bi- 
par t i te  subgraph 
with the least num- 
ber  of edges re-  
moved. The  solu- 
t ion shown in 
Figure 4b has 18 re- 
maining edges. In  
such a subgraph, 
no member of one 
set is connected di- 

rectly to  another vertex of the same set. 
The  objective is to  find a bipartite sub- 
graph with the maximum possible num- 
ber of edges embedded or  the least num- 
ber removed. 

The functional-link net is not shown, 
but in the input vector each vertex is 
represented by one neuron of the input 
layer. which is then augmented. The  
state of the ith vertex. whether it be- 
longs to one subset or to another, is 
represented by VI  = 1 or V ,  = 0. T h e  
input /output  funct ion of t h e  i th  
McCulloch-Pitts neuron is given by 
V ,  = 1 if x, > threshold, 0 otherwise. 

The functional-link net is used to learn 

Figure 4. Solution and energy transitions for the bipartite subgraph problem: 
(a) original graph; (b) one solution with 18 edges embedded; (c) evolution of 
the optimization. 

the unknown Lyapunovfunctionfor the 
b ipar t i te  subgraph  problem.  F o r  
each input pattern, let p be an input 
pattern. The net adjusts the weights P, 
to  minimize the system error 

E =C E,,  net, -penalty,)* 

where penalty,] is the  number of edges 
removed and is the target output, and 
net,) is the actual output of the func- 
tional-link net. 

I' P 

Overview of algorithms. For map- 
ping or  supervised learning, inputs are  
enhanced to x,~ with elements (x,,, x,,~, 
. . . , x /,,, . . . , x p l ) .  The target outputs are  

and the weights are  wk1. For func- 
tional-link nets, the outputs t, can be  
treated independently of each other. 
Therefore, we need only consider one 
output t and weights PJ. All other out- 
puts a re  treated in the same manner. 
Initially, the  algorithm assigns t h e  
weight PI random values. It calculates 
the output oI, linearly as o, = C P,x,,. For 
each input pattern the changes in the 
weights a re  taken to be 

AP,,, = q(t, - ",JX/,, 

The changes are  calculated for all the 
patterns in the training set, and after 
each such presentation the weights are 
updated according to 

P ( k  + 1 ) = P , ( k  1 + c A P,,, 
11 

Updating is continued until the values 
of the weights wJ d o  not change sig- 
nificantly. The value of the parame- 
ter q may be  increased as (tp - o,,) de- 
creases. 

For  self-organization or clustering, 
input patterns ylJ are  enhanced to  pat- 
tern xI, and fed to the net one at a time. 
Initially, there is no cluster prototype. 
Pattern xI is therefore a cluster proto- 
type with link weights b, = x, The 
algorithm introduces pattern x2 to the 
net and evaluates the distance from x2 
to x, according to the expression 

If d(x,,  xz) i cluster radius, then x2 
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belongs to  the same cluster as x ,  and the cluster prototype 
value b, is updated. 

In general, after k cluster centers have been formed, a new 
pattern is assigned to a particular cluster k if d ( x ,  x k )  < 
d ( x ,  x,)  f o r m  = 1 , 2 ,  . . . , and m # k ,  and if d ( x ,  x k )  < cluster 
radius. Otherwise, a new cluster is formed. A t  all times, 
each cluster knows how many patterns are members of the 
cluster,  and  the  cluster pro to type  is updated accord- 
ingly to 

where n is the number of patterns already associated with 
that cluster. 

For associative recall, each pattern y,, may be enhanced to 
x,, form. This generally results in higher memory capacity. 
For a set of stored patterns x,,  the Lyapunov function is 

~ ( x )  = - C e - a i 2 (  x p  - x ) ‘ (  x P  - x )  
P 

For any cue x ,  the elements x, are changed repeatedly accord- 
ing to  

Conclusion. In the functional-link net we try to  separate 
the issues of representation and search, the latter t o  be 
understood in terms of search for a goal or a solution. The  
random-vector version of the functional-link net is eminently 
suitable for realization with simple hardware network archi- 
tectures. Numerous and significant advantages accrue from 
using a flat net, including rapid quadratic optimization in the 
learning of weights, simplification in hardware as well as in 
computational procedures, and uniform system architecture 
for all four functionalities. W 
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