
Functional-Link
Net Computing:
Theory, System
Architecture,
and Functionalities

Yoh-Han Paoand Yoshiyasu Takefuji,
Case Western Reserve University,
Cleveland, OH 44106

eurocomputing can support
learning relationships, cluster N analysis, associative recall, and

optimization. Currently, these proce-
dures are based on different algorithms
requiring different specialized system
architectures.

In this report, we describe a system
architecture and a network computa-
tional approach compatible with our
goal of devising a general-purpose arti-
ficial neuraI.net computer. This ap-
proach has been described previous-
ly.’.* We revisit it here to emphasize the
advantages that accrue from simplifica-
tion of net architecture.

The theoretical basis of our approach
is primarily Theorem 2.4 from work
by Hornik, Stinchcombe, and White’
(see the sidebar above right). Specifi-

cally, the theorem holds that i f f is a
mapping R‘ + R (from r-dimensional
space to one-dimensional space), then
we can approximate that function arbi-
trarily well by

where (A, x + h,) represents a linear

transformation of the input pattern vec-
tor x. We can understand the mapping
of the above equation in terms of a feed-
forward net that must learn both the
two sets of weights (0,) and (A,] and
thresholds h,, usually through back prop-
agation of error.

The random-vector version of the
functional-link net generates (A,] and b,

Figure 1. Comparison of hidden-layer net (a) and functional-link net (b) architectures.

76 COMPUTER

http://neuraI.net

randomly, and must learn only p,.
This results in a flat-net architecture
for which only weights (p,) must be
learned. Learning is in the nature of
quadratic optimization and is ex-
tremely rapid.

In this report, we illustrate thefunc-
tionalities of supervised learning and
optimization and briefly mention clus-
ter analysis and associative recall.

Supervised learning. Figure 1 com-
pares the net architectures of the
single hidden-layer net and the ran-
dom-vector version of the function-
al-link net. In the functional-link net,
the vectors A, and thresholds h, are
generated randomly, not learned.

Figure 2 compares the performanc-
es of a single hidden-layer net and a
functional-link net in an inferring
network description of a two-dimen-
sional surface, given only 24 exam-
p l e ~ . ~ The actual two-dimensional
surface is made up of two Gaussiaus,
as Figure 2a shows. Data fed to the
networks consisted of 24 samplings
of the surface. Acting on that data. a
back-propagation net with 48 hid-
den-layer nodes was able to learn the

y2 . 0.75
"non

n , 0.77

Sysbm Error j i , , . . , . , : ,

0.00

0.00

0.00

a 0 500 100015002000MO30003M040004MaYXY)
Iwatlon

M . 0.74

Figure 2. Comparative evaluation of learning rates and approximation capabili-
ties: (a) surface to be learned, consisting of two Gaussians; (b) back-propaga-
tion net with 48 nodes in the hidden layer; (c) functional-link flat net with 48
enhancement nodes; (d) functional-link flat net with 200 enhancement nodes.
Learning time in (d) is 0.14 that of (a).

May 1992 11

Figure 3. System architecture of the functional-link net.

surface to the extent shown in Figure
2b. The functional-link nets with 48 and
200 enhancement nodes achieved bet-
ter approximations with fewer iterations
in less time (Figures 2c and 2d).

System architecture. T h e random-
vector version of the functional-link net
is well suited to large-scale hardware
implementation. Figure 3 schematically
illustrates a network system architec-
ture.

Optimization. The functional-link net
can support many different functional-
ities with the same system architecture

and with only mi-
nor changes in the
algorithm. Figure 4
shows the use of
such a net for deal-
ing with the bipar-
tite subgraph opti-
mization problem.'

For the original
10-vertex, 27-edge
graph shown in
Figure 4a, the task
is to construct a bi-
par t i te subgraph
with the least num-
ber of edges re-
moved. The solu-
t ion shown in
Figure 4b has 18 re-
maining edges. In
such a subgraph,
no member of one
set is connected di-

rectly to another vertex of the same set.
The objective is to find a bipartite sub-
graph with the maximum possible num-
ber of edges embedded or the least num-
ber removed.

The functional-link net is not shown,
but in the input vector each vertex is
represented by one neuron of the input
layer. which is then augmented. The
state of the ith vertex. whether it be-
longs to one subset or to another, is
represented by VI = 1 or V , = 0. T h e
input /output funct ion of t h e i th
McCulloch-Pitts neuron is given by
V , = 1 if x, > threshold, 0 otherwise.

The functional-link net is used to learn

Figure 4. Solution and energy transitions for the bipartite subgraph problem:
(a) original graph; (b) one solution with 18 edges embedded; (c) evolution of
the optimization.

the unknown Lyapunovfunctionfor the
b ipar t i te subgraph problem. F o r
each input pattern, let p be an input
pattern. The net adjusts the weights P,
to minimize the system error

E =C E,, net, -penalty,)*

where penalty,] is the number of edges
removed and is the target output, and
net,) is the actual output of the func-
tional-link net.

I' P

Overview of algorithms. For map-
ping or supervised learning, inputs are
enhanced to x,~ with elements (x,,, x,,~,
. . . , x /,,, . . . , x p l) . The target outputs are

and the weights are wk1. For func-
tional-link nets, the outputs t, can be
treated independently of each other.
Therefore, we need only consider one
output t and weights PJ. All other out-
puts a re treated in the same manner.
Initially, the algorithm assigns t h e
weight PI random values. It calculates
the output oI, linearly as o, = C P,x,,. For
each input pattern the changes in the
weights a re taken to be

AP,,, = q(t, - ",JX/,,

The changes are calculated for all the
patterns in the training set, and after
each such presentation the weights are
updated according to

P (k + 1) = P , (k 1 + c A P,,,
11

Updating is continued until the values
of the weights wJ d o not change sig-
nificantly. The value of the parame-
ter q may be increased as (tp - o,,) de-
creases.

For self-organization or clustering,
input patterns ylJ are enhanced to pat-
tern xI, and fed to the net one at a time.
Initially, there is no cluster prototype.
Pattern xI is therefore a cluster proto-
type with link weights b, = x, The
algorithm introduces pattern x2 to the
net and evaluates the distance from x2
to x, according to the expression

If d(x,, xz) i cluster radius, then x2

78 COMPUTER

belongs to the same cluster as x , and the cluster prototype
value b, is updated.

In general, after k cluster centers have been formed, a new
pattern is assigned to a particular cluster k if d (x , x k) <
d (x , x,) f o r m = 1 , 2 , . . . , and m # k , and if d (x , x k) < cluster
radius. Otherwise, a new cluster is formed. A t all times,
each cluster knows how many patterns are members of the
cluster, and the cluster pro to type is updated accord-
ingly to

where n is the number of patterns already associated with
that cluster.

For associative recall, each pattern y,, may be enhanced to
x,, form. This generally results in higher memory capacity.
For a set of stored patterns x,, the Lyapunov function is

~ (x) = - C e - a i 2 (x p - x) ‘ (x P - x)
P

For any cue x , the elements x, are changed repeatedly accord-
ing to

Conclusion. In the functional-link net we try to separate
the issues of representation and search, the latter t o be
understood in terms of search for a goal or a solution. The
random-vector version of the functional-link net is eminently
suitable for realization with simple hardware network archi-
tectures. Numerous and significant advantages accrue from
using a flat net, including rapid quadratic optimization in the
learning of weights, simplification in hardware as well as in
computational procedures, and uniform system architecture
for all four functionalities. W

References

1. Y.H. Pao, Adaptive Pattern Recognition and Neural Networks.
Addison-Wesley, Reading, Mass., 1989, pp. 197-222.

2. Y.H. Pao and T. Goraya, “Neural Net Computation of Solutions
to Ill-Formed Optimization Problems,” Center for Automation
and Intelligent Systems Research report, Case Western Reserve
Univ., Cleveland, Ohio, 1991.

3. K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedfor-
ward Networks Are Universal Approximators.” Neural Net-
works, Vol. 2, No. 5, 1989, pp. 359-366.

May 1992

4. N. Mues, “Evaluation of Characteristics of the Random-Vector
Functional-Link Net in Supervised Learning and Optimization
Tasks.” CAISR report, Case Western Reserve Univ., Cleveland,
Ohio. 1991.

5. Y. Takefuji, Neural Network Parallel Computing, Kluwer Pub-
lishing, Hingham, Mass., 1992, pp. 1-26.

Yoh-Han Pao is the George S. Dively Distinguished Professor of
Engineering at Case Western Reserve University. He has served as
chair of CWRU’s Electrical Engineering Department (1969-77), as
director of the National Science Foundation’s Electrical. Computer,
and System Engineering Division (1978-80), and as founding direc-
tor of CWRU’s Center for Automation and Intelligent Systems
Research. He is also cofounder and president of AI Ware Inc.,
Cleveland, Ohio.

Yoshiyasu Takefuji is on the faculty of the Electrical Engineering
Department at Case Western Reserve University. His research fo-
cuses on neural network parallel computing for solving real-world
problems. He is the coauthor of two books, Digital Circuits (Ohm-
Sha Publishers, 1984) and Neural Network Computing (Baifukan
Publishers, 1991), and the author of a third, NeuralNetwork Parallel
Computing (Kluwer Publishers, 1992).

INTERNATIONAL
JOINT CONFERENCE
ONNEURALNJXWORKS BIK“

BALTIMORE CONVENTION CENTER
JUNE 7-11,1992 Baltimore, Maryland

Program Chair: General Chair: Honorary Chair:
Clifford Lau Bernard Widrow John J. Shynk
Office of Naval Research Stanford University U.C. Santa Barbara

Technical Sessions Available:

* Artificially Intelligent Neural Networks Optical Neurocomputers - Optimization Associative Memory Pattem Recognition Electronic
Neurocomputers * Robotics and Control Image Processing - Sensation
and Perception * Invertebrate Neural Networks Sensorimotor Control
Systems Machine Vision Signal Processing * Neural Fuzzy Systems

Supervised Leaming Neurodynamics * Unsupervised Leaming
8 SPECIAL SESSIONS will be offered.
TUTORIALS Sunday, June 7,1992:

Applications For Neuroscience Cognitive Science
Computational Vision - Wavelet Transforms
Robot Models of Behavioral Leaming
Neural Oscillations: Models and Experiments
Analog VLSI Models of Neural Computation
Neurobiology of Memory and Leaming

THE INSTITUTE OF

ELECTRICAL AND

ELECTRONICS
ENGINEERS. INC

Neural Networks for Sensor Fusion - Electronic Implementation INNS
New Leaming Algorithms INTERNATIONAL

NEURAL NETWORK
SOCIETY For Further Information Please Contact:

IJCNN’92 Baltimore
Meeting Management Tel. (619) 453-6222
5665 Oberlin Drive, #110, San Diego, CA 92121 FAX (619) 535-3880

